
Immersively Learning Object Oriented
Programming Concepts With sCool

Chanelle Kaith Mosquera
Computer Science Department

California Polytechnic State University
San Luis Obispo, CA, USA

cmosquer@calpoly.edu

Alexander Steinmaurer
Computer Science Department
Graz University of Technology

Graz, Austria, EU
a.steinmaurer@student.tugraz.at

Christian Eckhardt
Computer Science Department

California Polytechnic State University
San Luis Obispo, CA, USA

eckhardt@calpoly.edu

Christian Guetl
Computer Science Department
Graz University of Technology

Graz, Austria, EU
c.guetl@tugraz.at

Abstract—The proposed project, sCool, is an adaptive mobile
game designed for STEM education. In this work, we present a
new iteration of sCool in efforts to further examine contributing
factors of engagement and comprehension. The new developed
game experience for acquiring object-oriented programming
skills is divided into two parts: concept-learning and practical. In
the concept-learning part, the users explore a virtual environment
filled with puzzle-pieces hinting theoretical concepts, preparing
the users for the practical part. There, the users need to solve a
programming challenge in Python, directing game-objects on a
checkerboard to certain fields. Conducting a study involving 39
school students and three teachers, we are able to successfully
display an enhanced understanding of complex programming
concepts.

Index Terms—game-based learning; K-12 education; coding;
digital skills

I. INTRODUCTION

Digital skills become increasingly important in our modern
society. For example, the European Commission published a
digital competence framework for its citizens [1] and UN-
ESCO a global framework for digital literacy skills [2]. This
set of competences is seen as crucial for personal fulfilment
and development, social inclusion and employment, and for
active citizenship. Developing digital competences is even
perceived as a human right. Competence areas include devices
and software operation, information and data literacy, commu-
nication and collaboration, digital content creation, security,
problem solving, and career-related applied competences.

Computational thinking and coding constitute important
skills within the framework of digital competences. Various
teaching and training approaches for formal education, life-
long learning and vocational training have been developed,
researched and applied in educational settings [3]. Game-
based learning in this context can provide fun, engaging and
motivating but yet effective learning experiences.

The situation mentioned above has motivated us to start
the research project sCool, which was originally initiated by
research groups from —— University of ———- in ——

— and ———— University in the —– [4]. Based on the
exploratory learning model [5] and the MDA framework [6],
sCool is designed as a mobile game to learn and practice
coding in a playful way for school and novice bachelor
students. Additionally, a web interface enables teachers and
instruction designers to create their own learning content.
Studies, both in school and for beginners at university level,
revealed engagement and motivation and acquisition of knowl-
edge of programming concepts and coding skills [7].

Based on the promising previous results and experiences
gained, a new gaming type for teaching object-oriented pro-
gramming skills and an improved approach for acquiring text-
based learning content in a more play-full way. The main
contributions in this research are:

• Introducing a new type of game mode for the mobile
video game sCool

• Giving an overview of a game-based approach to learn
object-orientated programming in game-based way

• Evaluating the new game modes in three groups in
order to get a comprehensive picture of different aspects
(usability, engagement, usage in education, etc.)

• Receiving a pedagogical point of view for the developed
concept from teachers

• Discussing findings to improve the current version for its
practical usage in education

The remainder of this paper is structured as follows: Chapter
2 gives an overview of the relevance of computational thinking
in education and introduced various approaches found in
education. The previous work on the video game sCool version
2 is briefly described. Chapter 3 covers the requirements on
the new game mode of sCool version 3 and gives an overview
of the further development. In chapter 4 the evaluation of
sCool version 3 is presented in detail. This chapter includes
an introduction of the used instruments, the procedure and
describes the participants. The last section of this chapter deals
with the results of the study. Chapter 5 summarize the findings



and gives a prospect on future work.

II. RELATED WORK

A. Computational Skill Teaching

Computational thinking is related to problem solving in
a structured way. These techniques are general strategies to
think about problems analytically. Computational thinking is
not necessarily related to programming and computer science
[8]. It is rather a higher-order way of think about problems
[9].

There are different approaches in literature to define a
set of skills related to computational thinking. A common
classification is decomposition, pattern recognition, abstrac-
tion, and algorithms [10], [11]. These skills can be useful in
other subjects as well and are not restricted to an academic
point of view on computer science. Many national K-12
curricula already cover various approaches to teach student’s in
computational thinking. These national curricula distinguish in
various aspects [12]. For one thing, there is no common term
for computing education (CS, CSE, ICT, Informatics, Digital
literacy, etc.), for another thing the objectives are different.
General goals are digital literacy, algorithmic and logical
thinking, problem solving, and understand basic computer
science concepts.

Besides national efforts in creating a curriculum for com-
puter science class different organizations work on standards
as well. The Computer Science Teachers Association (CSTA)
released the CSTA K-12 Computer Science Standards [13]
in 2017 in order to provide a comprehensive curriculum for
computer science. It is a standard for all students in K-12
education and is subdivided into five levels (1A, 1B, 2, 3A,
and 3B) that are assigned to a corresponding age group from
kindergarten until grade 12. Each level consists of the same
overall concepts:

• Computing Systems: Hardware, Software, Devices and
Troubleshooting

• Networks and the Internet: Network Organization, Cy-
bersecurity,

• Data and Analysis: Collection, Visualization, Transfor-
mation, Storage

• Algorithms and Programming: Variables, Algorithms,
Control, Modularity, Development

• Impacts of Computing: Culture, Ethics, Safety Law,
Social Interactions

B. Tools for Teaching

A wide range of tools help to teach various aspects in
computing. Some tools cover just certain aspects of computing,
others are orientated on curricula (for example CSTA K-
12 curriculum). Many tools follow a game-based approach.
Games with a focus on coding can be separated into three
groups [14]: i) coding (understand programming language and
its syntax) ii) algorithmic thinking (learn related concepts
not depending on a certain programming language), and iii)
creating games (create own games in a technical way).

The web-based tools CodeCombat [15] and CodeMonkey
[16] are games of the category coding. The setting of both
games is similar since the tasks are based on a narrative.
These tasks have to be solved using a programming language
(JavaScript or Python). Therefore, the players have to control
an avatar using programming commands and apply introduced
concepts like algorithms, loops, conditions, objects, etc. The
game LightBot [17] is a puzzle game for learning compu-
tational concepts. The game’s focus is to teach algorithmic
thinking by using command blocks without a certain program-
ming language. New concepts are introduced consecutively
so the level’s complexity increase. In this way concepts like
procedures, recursion, loops, and conditions can be learned.
The popular programming language Scratch [18] makes it
possible to create games in a simple way. It is a block-based
language and supports the usage of different media (sound,
graphics, etc.). Students can create games based on different
blocks (control, data, events, etc.).

The mobile video game sCool [4] was initial developed in a
cooperation between ——– University of ———- and ——-
University to support students in computer science education.
The idea was to develop a flexible game environment that
supports an exploratory way of learning. The game-based
approach should encourage players to explore the game and
learn new concepts. The adaptive architecture enables an agile
way to add more game modes and concepts based on existing
content. The game has two different modes with a certain
purpose. In the concept-learning (or explorative) game type
new concepts are introduced in a textual way. This exploratory
approach should encourage players to learn new concepts that
have to be applied in the practical mode, which is the second
mode. Both game types are linked via a overall narrative. The
goal is to support a space shuttle’s crew to repair the broken
shuttle and escape from the foreign planet. Based on several
evaluations [7] the practical missions support different coding
concepts. The practical mode supports pseudo block-based
programming where the blocks are converted into Python code.
This makes the interaction with the code editor for beginners
easier since they do not have to focus on syntactical details.
Educators can define the concepts using a web application to
have a highly adaptive content. Players can learn concepts like
sequencing, conditions, loops, objects, data types, etc. Based
on the experiences in school and evaluations with educators
it was decided to extend the existing game with new game
types. One of the central improvements was to change the
way concepts are textually presented to the students because
they often did not read them. Another requirement was to
introduce object-oriented concepts in a meaningful way that
students are able to understand and apply these concepts in an
intuitive way.

III. COMPUTATIONAL SKILL TEACHING USING SCOOL

A. Requirements and Concepts

This expansion of sCool promotes a new game type for both
the concept-learning part and the practical part. In the concept-
learning part, the main task is to scavenge for resources, collect



puzzle pieces which contain fragments of text, and solve the
puzzle by stringing the text together in correct order. In the
practical part, the player applies the concepts they learned in
object-oriented programming to defeat enemies. The addition
of these features propose a solution for improving player
engagement in text-based learning and providing a structure
that fosters learning of object-oriented programming concepts.

As mentioned earlier, sCool is built with an adaptive archi-
tecture. This design enabled the thorough integration of this
new game type. The game type can be played with existing
players and lesson plans, in addition to new ones. It continues
to use the existing web API to obtain content and then send
the results back. It also maintains the in-game currency which
was introduced as coins in the previous versions of sCool
and comes back in this game type as resources. Therefore,
any existing players can continue to earn currency playing
this game type and spend it in the in-game store, a previous
successful feature.

sCool’s adaptivity is further demonstrated by its use of
additional existing parameters set in the webplatform. These
parameters influence the game in the following ways:

• Concept-learning part: size and complexity of map,
number of interactive objects

• Practical part: length of challenge, number of enemies,
number of programmable units

The structure of the game design is based on the MDA
framework and influenced by the Exploratory Learning Model,
guiding the design of an immersive learning experience in a
virtual environment. Experiential learning cycle is made of
the following elements: exploring, reflecting, forming abstract
concepts, and testing in new situations.

The player has the freedom to explore the environment, be
introduced to theoretical concepts, apply them in a practical
manner, then proceed to additional levels where they can
further attain and practice their skills.

B. Development Details

This section goes into detail of the development of the
concept-learning and practical parts of the game. The game is
presented in a narrative to immerse players in the environment.
At menu of the game, the player can select which game type
they prefer to play. Data integrity is maintained between each
game type. The option to choose allows the game to appeal
to different types of players and ways of learning. However,
this paper focuses on the new game type which specifically
appeals to learning object-oriented programming concepts.

In the gameplay’s narrative, the player is a scavenger
collecting resources outdoors. These resources are made into
boxes which can be programmed to help the player protect
the outdoors from enemies. In the concept-learning part, the
player finds themselves in a 3D outdoor setting where they
explore the map and collect resources. Hidden among the
resources are also mysterious chests the player needs to collect
in order to complete the level. Figure 1 demonstrates the
sequence of events that follow the player’s tasks - chopping
the tree, collecting resources, and finding mystery chests. The

(a) Chopping the tree (b) Collecting resources

(c) Finding mystery chests

Fig. 1: Concept-Learning Part - Exploring

Fig. 2: Solving the Puzzle

player interacts with the tree by pressing a button, resulting
in collectable wood scattered across the ground and a mystery
chest. When the mystery chest is collected, it reveals to contain
a parchment of paper.

After all parchments of paper are collected, the player tries
to piece the broken text together to make a cohesive text.
Unscrambling the text reveals a concept for the students to
learn and follows a question they must answer about it. If the
player answers the question correctly, they move on to the
next level; otherwise, they must repeat this level. As Figure
2 shows, the collected text fragments are listed in scrambled
order on the left, which the player must drag and drop onto
the right side in the correct order. In order to unscramble the
text, the player must read the fragment of text and choose
the sequential fragment that will create a sensible sentence.
This task requires attentiveness and reading comprehension,
motivating the students to actually read and comprehend the
text, as opposed to simply skimming and moving forward with
the game.

In the practical part of the game, the player must program
the blocks to catch the enemies. At the challenge’s initial
state, there are wooden boxes positioned arbitrarily on an XY-
coordinate play-field, as shown in Figure 3. As time passes,
bugs are popping up on the field and the player has a set
time to catch them all. The total number of bugs that appear
and the amount of time depends on the level’s difficulty. The
player must solve this challenge by programming the boxes
to move to different points on the field where the bugs pop
up. Since there are multiple boxes to interact with, the player



Fig. 3: Initial state of challenge

Fig. 4: Block-Based Object Oriented Programming

must specify which instance of the box to move by referencing
that specific block. This ability demonstrates this version of
sCool’s pseudo block-based programming adaptation to sup-
port object-oriented programming. As you can see in Figure
4, the player is provided with a block-based programming tool
where they must drag and drop the code block (left) onto the
text editor (right). For this challenge, the available code blocks
the player can use contain pseudo code for changing a block’s
label and for moving it.

The system’s support for object-oriented programming was
developed by creating a class (which represent the boxes in
the game) in C# and wrapping it with a python class. The C#
class allows access to the Unity libraries which are necessary
for displaying and interacting with the boxes in the game,
whereas the python class allows interaction with this C# class
using python code.

Each box is an instance of this class and contains a string
variable ”Label” and a function ”Move(int x, int y)”. At the
start of the game, the boxes are given default labels ”block0”
and ”block1”. The code in Figure 4, shows that the player can
access block0’s label variable by calling ”block0.Label” and
setting it to a new string ”i 23”. In the proceeding lines, block0
is now referenced as i 23. Furthermore, to access a specific
box object’s MoveTo(. . . ) function, the player must call the
function from a specific block, such as in the second line
”i 23.MoveTo(2,4)” and in fourth line ”block1.MoveTo(8,8)”.

5 shows the game’s state after compiling and running the
python code. The boxes in the scene have been relabeled
accordingly and are moving to the desired destinations.

Fig. 5: After code execution

IV. EVALUATION IN SCHOOL

The focus of the initial studies was to evaluate different
aspects of the prototype and figure out if the new game
type is suitable for computer science education. Therefore, we
conducted a study on three different groups in two schools.
The first school was a regular secondary school and the
second one an academic secondary school (lower cycle). The
student’s age range is similar in both schools (7th grade
in secondary school and 8th grade in academic secondary
school). The choice of different school types should bring a
variety in social background and experience in game-based
learning approaches. There were four questions related to the
evaluation:

1) How is the new game type perceived by the students
from different school types?

2) Is the user interface intuitive for students?
3) Can sCool’s new game type help the students to under-

stand certain coding concepts?
4) What are educators’ opinions about the new game types?

A. Setting and Instruments

This study was developed to be conducted in a classroom
setting consisting of different social forms. All interventions
were in a supervised environment where one external supervi-
sor and the class’ computer science teacher were present the
whole time. Each sequence was clearly separated from each
other in order that all students know exactly what to do. In
general the students were instructed to work in groups of two
in order to help each other. Depending on the schools ICT
infrastructure they worked together on one computer or each
student on a separate one. sCool version 3 (which supports the
game type introduced in this paper) was installed together.

The course content was created using the sCool web ap-
plication. In this way all students were provided with the
same content. The course consisted of five concept-learning
and two practical missions. Table I shows what concepts were
linked to the corresponding missions. Overall the focus was on
object-orientated programming using the Python programming
language. The tasks in the concept-learning missions presented
a new concept in a textual way followed by a single-choice
question. The asked questions should review if the students
got the concepts right. Both practical missions required to do
some programming on two block objects to defeat the bugs.



TABLE I: Correlation of concepts and missions

Mission Concept Question
Concept-Learning Missions

Task 1 Introduction What are bugs?

Task 2 Objects Which two terms characterize objects?

Task 3 Properties What means label in terms of objects?

Task 4 Properties Which command renames an object?

Task 5 Methods Which command will move an object?

Practical Missions

Task 1 Objects Defeat five bugs using both blocks

Task 2 Objects Defeat fifteen bugs using both blocks

The number of enemies was increased to increment the level
of difficulty.

All data was collected based on the participants consent. The
data processing happened fully anonymized since the students
worked with pseudonyms.

After working with sCool the students had to solve a similar
task on a worksheet. This provided information about the level
of knowledge and also showed if the students were able to
transfer the concepts in a different area.

For the student’s evaluation at the end of the experiment
a comprehensive questionnaire was used. In every experiment
the same questions were asked and they covered the following
categories:

• general questions
• game engagement [19]
• system usability [20]
• game-related questions
The questionnaire was answered using Google Forms [21].

The data collected from the general and game-related ques-
tions were analyzed using Microsoft Excel. Both game en-
gagement and system usability was analyzed using the open-
source programming language R to categorize the factors and
calculate mean and standard deviation. The game-related data
was sent from all computers to the server. All data is stored in a
Microsoft SQL database. The data visualization was processed
using sCool’s web application and Microsoft Excel.

The teacher’s evaluation was conducted after each experi-
ment. For this purpose various questions were prepared before-
hand and asked as part of a structured face-to-face interview.
The focus of the interviews was to get a teachers opinion
related to pedagogical aspects. At the end of the interview the
educators could add any additional feedback. The information
was collected and analyzed using Microsoft Excel.

B. Procedure

The three conducted experiments had the same structure. Ta-
ble II illustrates the general schedule of all experiments. Each
experiment was done in 100 minutes in total. After a short
introduction and brainstorming about technology and coding
in everyday life the game was introduced to the group. The
students played the game for 50 minutes and were instructed
to help each other if questions appear. Within the given time

TABLE II: Experiment planning

Time Task Method

5’ welcome, introduction of the project frontal

10’ motivation for programming, brainstorming in plenum

5’ introduce sCool and game mode in plenum

5’ form groups, installation group

50’ play sCool group

10’ work on worksheet individual

10’ answer questionnaire individual

5’ final discussion in plenum

Fig. 6: Practical task on the worksheet after working with
sCool

the students were presented five concept-learning and two
practical tasks. After 50 minutes the students stopped playing
the game and started with the worksheet. Figure 6 shows the
worksheet’s task where the students had to navigate the bikes
to the corresponding houses using already learned Python
commands. The XY-coordinates should enable a setting the
students are familiar with. Conclusively the students filled out
the questionnaire.

C. Participants

The experiment was conducted in three groups of two
schools. Table III gives an overview of the groups. The first
group was a regular secondary school in seventh grade. In total
twelve students (2 girls and 10 boys) attended the evaluation.
They did not have any prior knowledge in programming
and never worked with game-based approaches in computer
science class. The second and third group were students of
an academic secondary school in eight grade. The groups
consisted of 13 (13 boys) and 14 students (6 girls and 8
boys). Three of the students in the second group had prior
knowledge in programming (Scratch and HTML) and eight
students in the third group already programmed with Scratch.
In total all groups covered 39 participants between 12 and 15



TABLE III: Overview of experiments’ participants

Group 1 Group 2 Group 3

Grade 7th 8th 8th

12–13 years 12–15 years 13–14 years
Age (M=12.27) (M=13.69) (M=13.5)

(SD=0.22) (SD=0.39) (SD= 0.27)

Gender 10 boys, 2 girls 13 boys 6 girls, 8 boys

Coding Experience 0 persons 3 persons 8 persons

TABLE IV: Overview of interviewed teachers

Teacher 1 Teacher 2 Teacher 3

Gender female male male

Experience 15 years 1 year 30 years

Education college of education university IT certifications

School Type secondary secondary secondary/college

years (M=13.09, SD=0.61) consisting of 8 girls (20.5%) and
31 boys (79.5%).

To get a pedagogical point of view on the video game
an evaluation with three teachers was also part of the study.
Therefore, interviews with three different teachers were con-
ducted. All participants differ in various aspects: gender,
professional experience, education, and teaching methods.
Table IV gives an overview of the interviewed teachers. There
professional experience is between 1 and 30 years. Each
participant had a different education in teaching and computer
science.

D. Results and Discussion

In total 39 students (8 girls and 31 boys) attended the initial
study. The general conditions for all groups were equal. When
considering the results of the Game Engagement Questionnaire
in Table 7 the distance between the level of immersion and
presence is higher at the first experiment. This could be traced
back to the fact that this students are not familiar with game-
based approaches in computer science class and are more
engaged in virtual environments. The level of absorption is
similar in all groups.

Fig. 7: Comparison of Game Engagement [19]

The system usability score reached a value around 68 in
each group which means the usability is above average:

• SUS Group 1: 70 (SD=13.7)
• SUS Group 2: 67.9 (SD=14.6)
• SUS Group 3: 74.5 (SD=17.3)

All of the students play (mobile) video games and at least
30.8% even did programming in a game-based way before.
Consequently they already used different systems so the Sys-
tem Usability Score can be taken as a good indicator for the
students perspective on the system’s usability. The students
were asked to rate the game’s control and the keyboard at
the game-related questions. 87.18% agreed that the control
is easy to use and even 92.31% answered that the usage of
the keyboard is also easy. Some of the students asked for
additional features in the code editor (mouse cursor, more
keyboard support).

31 students (79.49%) answered that programming with
sCool was fun for them and 33 persons (84.62%) stated that
they enjoyed this kind of game. All participating students were
able to solve the concept-learning tasks of the game. 35 out
of 36 players (groups) could pass the first practical task and
another 28 groups (77.78%) could pass the second task as well.
The most successful group was group 3 where all students
could master all missions. The worksheet was assessed based
on a correct syntax and each individual delivery task. 38
students solved at least one task correctly and 26 (66.67%) of
these students even solved all tasks. The students had a high
confidence in their self-assessment since 30 students (76.92%)
answered that they learned something while playing the game.
At least more than half (56.41%) of the participants stated that
they got encouraged to learn more about programming.

All teachers are using apps in there class and they stated
the following three aspects as most important:

• Add and create own content into the app
• Integrability in class
• Simple usage (availability, installation, etc.)
Although just one teacher does programming in class but

each participant would use sCool as a tool for introducing
computational skills and coding. All teachers answered that
sCool would fit best to work on a new topic and learn to
apply concepts. The teachers also agree that the game would
be most appropriate for secondary school (especially grade 5
to 8). When asking for strengths and weaknesses the teachers
answered that sCool is a good approach to motivate students
to learn coding in a different way. Another advantage is that
the teachers can focus on a student-centred class where the
children can be coached. They see the disadvantages in the
current design and user interface. A more intuitive way to
make the game more self-explaining was requested. It was
also considered that students need some interest in coding to
make a successful learning experience.

V. CONCLUSION AND FUTURE WORK

The goal of the continued design and development of sCool
is to explore the educational impact of new game scenarios.



In this iteration, the focus was on increasing the reading
comprehension for text-based learning and to create a struc-
ture that supports the study of object-oriented programming.
Conducting the Game Engagement Questionnaire and a post
survey regarding the individual experience with middle school
students as well as their teachers displayed a great acceptance
of usability, high engagement, and an increased affinity to
further investigate programming skills.

Based on our results, future work encompasses broadening
sCool’s support for more complex programming concepts and
its usability for different learning environments. At its current
state, sCool is played in conjunction with teacher instruction
and additional assignments; however, a more self-explanatory
game-play experience will allow sCool to be an option for
those learning outside of a classroom setting.

ACKNOWLEDGMENT

We want to gratefully acknowledge the support of —-
University of ——- and ——— University for this research,
but in particular the ———— scholarship supporting on the
students involved in this research. We also want to thank —
——, —— and ————– from ——– University of ——
— and ——————– and ————— for co-initiating this
research project.

REFERENCES

[1] S. Carretero, R. Vuorikari, and Y. Punie, DigComp 2.1: The digital
competence framework for citizens with eight proficiency levels and
examples of use, ser. EUR, Scientific and technical research series.
Luxembourg: Publications Office, 2017, vol. 28558.

[2] N. Law, D. Woo, J. de la Torre, and J. Won, “A global framework of
reference on digital literacy skills for indicator 4.4.2,” UNESCO-UIS,
Canada, Information Paper No. 51, Jun 2018.

[3] M. Romero, A. Lepage, and B. Lille, “Computational thinking
development through creative programming in higher education,”
International Journal of Educational Technology in Higher
Education, vol. 14, no. 1, p. 42, 2017. [Online]. Available:
https://doi.org/10.1186/s41239-017-0080-z

[4] A. Kojic, M. Kojic, J. Pirker, C. Gütl, M. Mentzelopoulos, and
D. Economou, “scool - a mobile flexible learning environment,” in iLRN
2018 Montana. Verlag der Technischen Universität Graz, 2018, pp. 72–
84.

[5] S. De Freitas and T. Neumann, “The use of ‘exploratory learning’ for
supporting immersive learning in virtual environments,” Computers &
Education, vol. 52, pp. 343–352, 2008.

[6] R. Hunicke, M. Leblanc, and R. Zubek, “Mda: A formal approach to
game design and game research,” in In Proceedings of the Challenges
in Games AI Workshop, Nineteenth National Conference of Artificial
Intelligence. Press, 2004, pp. 1–5.

[7] A. Steinmaurer, “Revising a game-based learning platform for com-
putational skills in education,” Master’s thesis, Graz University of
Technology, Graz, Dec 2019.

[8] J. M. Wing, “Computational thinking,” Commun. ACM,
vol. 49, no. 3, p. 33–35, Mar. 2006. [Online]. Available:
https://doi.org/10.1145/1118178.1118215

[9] J. Mueller, D. Beckett, E. Hennessey, e. P. J. Shodiev, Hasan”, and C. B.
Hodges, Assessing Computational Thinking Across the Curriculum.
Cham: Springer International Publishing, 2017, pp. 251–267.

[10] BBC. (2020, Jan.) Introduction to computational thinking. [Online].
Available: https://www.bbc.com/bitesize/eguides/zp92mp3/revision/1

[11] Code.org. (2020, Jan.) Cs fundamentals unplugged. [Online]. Available:
https://code.org/curriculum/unplugged

[12] P. Hubwieser, M. N. Giannakos, M. Berges, T. Brinda, I. Diethelm,
J. Magenheim, Y. Pal, J. Jackova, and E. Jasute, “A global snapshot
of computer science education in k-12 schools,” in Proceedings of
the 2015 ITiCSE on Working Group Reports, ser. ITICSE-WGR ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
65–83. [Online]. Available: https://doi.org/10.1145/2858796.2858799

[13] Computer Science Teachers Association. (2017) CSTA K-12
Computer Science Standards, Revised 2017. [Online]. Available:
http://www.csteachers.org/standards

[14] S. Combéfis, G. Beresneviuius, and V. Dagiene, “Learning programming
through games and contests: Overview, characterisation and discussion,”
in Olympiads in Informatics, vol. 10. Vilnius University Institute of
Mathematics and Informatics, 2016, pp. 39–60.

[15] CodeCombat Inc. (2019) Codecombat. [Online]. Available:
https://codecombat.com/

[16] CodeMonkey Studios Inc. (2020) Codemonkey. [Online]. Available:
https://www.codemonkey.com/

[17] LightBot Inc. (2017) lightbot. [Online]. Available: https://lightbot.com/
[18] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,

K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman,
and et al., “Scratch: Programming for all,” Commun. ACM,
vol. 52, no. 11, p. 60–67, Nov. 2009. [Online]. Available:
https://doi.org/10.1145/1592761.1592779

[19] J. H. Brockmyer, C. M. Fox, K. A. Curtiss, E. McBroom, K. M.
Burkhart, and J. N. Pidruzny, “The development of the game engage-
ment questionnaire: A measure of engagement in video game-playing,”
Journal of Experimental Social Psychology, vol. 45, no. 4, pp. 624 –
634, 2009.

[20] J. Brooke et al., “Sus-a quick and dirty usability scale,” Usability
evaluation in industry, vol. 189, no. 194, pp. 4–7, 1996.

[21] Google LLC. (2020) Google forms. [Online]. Available:
https://www.google.com/intl/en EN/forms/about/


